

Coordination Chemistry Reviews 168 (1998) 295

COORDINATION CHEMISTRY REVIEWS, VOL. 168 (1998)

AUTHOR INDEX

Chatterjee, D., 273

Kirsch-De Mesmaeker, A., 233

Pariya, C., 1

Hegedus, L.S., 49

Moucheron, C., 233

Richmond, M.G., 177

Jayaprakash, K.N., 1

Ortmans, I., 233

Sarkar, A., 1

SUBJECT INDEX

Alkene metathesis

Alkene metathesis: new developments in catalyst design and application 1

DNA interaction

Ru(II) polypyridine complexes with a high oxidation power. Comparison between their photoelectrochemistry with transparent SnO₂ and their photochemistry with desoxyribonucleic acids 233

DNA photoadducts

Ru(II) polypyridine complexes with a high oxidation power. Comparison between their photoelectrochemistry with transparent SnO_2 and their photochemistry with desoxyribonucleic acids 233

DNA photocleavages

Ru(II) polypyridine complexes with a high oxidation power. Comparison between their photoelectrochemistry with transparent SnO_2 and their photochemistry with desoxyribonucleic acids 233

Molybdenum

Alkene metathesis: new developments in catalyst design and application 1

Organic synthesis

Transition metals in organic synthesis: high-lights for the year 1996 49

Photoelectrochemistry

Ru(II) polypyridine complexes with a high oxidation power. Comparison between their photoelectrochemistry with transparent SnO₂ and their photochemistry with desoxyribonucleic acids 233

Polypyridine Ru(II) complexes

Ru(II) polypyridine complexes with a high oxidation power. Comparison between their photoelectrochemistry with transparent SnO₂ and their photochemistry with desoxyribonucleic acids 233

Ring-opening metathetic polymerization (ROMP)
Alkene metathesis: new developments in catalyst design and application 1

Ring closing metathesis catalysis

Alkene metathesis: new developments in catalyst design and application 1

Spectroelectrochemistry

Ru(II) polypyridine complexes with a high oxidation power. Comparison between their photoelectrochemistry with transparent SnO₂ and their photochemistry with desoxyribonucleic acids 233

Transition metals

Transition metals in organic synthesis: high-lights for the year 1996 49